Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543130

RESUMO

BACKGROUND: Transient receptor potential channels (TRP) are overexpressed in some pancreatic adenocarcinoma (PDAC) patients and cell lines, settling them as putative therapeutic targets in this disease. Reactive oxygen species (ROS), with levels increased in PDAC, modulate some members of the TRP family renamed "redox channels". Here, we investigate the direct effects of 4-hydroxinonenal (4-HNE) on TRPA1, natively expressed in PDAC cell lines and in association with cell migration and cell cycle progression. METHODS: We performed microfluorimetry experiments, while the activation of resident membrane channels was investigated using confocal microscopy. We applied a prospective molecular docking of 4-HNE using Autodock and AutoDock Tools4. Also, we simulated the diffusion of 4-HNE through the membrane from the extracellular space with the Permeability of Molecules across Membranes (PerMM) web server. The analysis of cell migration was performed using the wound healing assay, and cell cycle progression was acquired using a Beckman Coulter CytoFlex flow cytometer. RESULTS: Our results show, for the first time in PDAC, that 4-HNE diffuses through the cell membrane and rapidly activates Ca2+ uptake in PDAC cells. This process depends on TRPA1 activation, as 4-HNE forms a covalent binding with a pocket-like region within the intracellular N-terminal of the channel, shaped by the cysteine residues 621, 641, and 665. The activation of TRPA1 by 4-HNE inhibits cell migration and induces cell cycle arrest in the G2/M phase. CONCLUSIONS: Our study brings new insights into the effects of 4-HNE, highlighting the activation of the TRPA1 channel, a druggable, putative target for PDAC-expressing tumors.

2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958812

RESUMO

Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1ß) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.


Assuntos
Neuralgia , Animais , Ratos , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/genética , Neuralgia/terapia , Nervos Espinhais/metabolismo
3.
iScience ; 26(10): 107956, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822496

RESUMO

Pancreatic beta cells produce and secrete insulin as a response to rises in blood glucose. Despite the advances in understanding glucose-regulated insulin transcription and translation the mechanisms triggering the synthesis of new insulin molecules are still incompletely described. In this report, we identify EDEM1 as a new modulator of insulin synthesis and secretion. In the presence of EDEM1, INS-1E cells secrete significantly more insulin upon glucose stimulation compared to control cells. We found that overexpression of EDEM1 inhibited the IRE1/JNK/c-Jun pathway, leading to an increase in the insulin mRNA level. Similarly, EDEM1 transduced human islets secreted significantly more insulin upon stimulation. Furthermore, EDEM1 improved insulin secretion restoring normoglycemia and glucose tolerance in diabetic rats. We propose EDEM1 as a regulator of the UPR via IRE1/XBP1s and IRE1/JNK/c-Jun signaling cascades and insulin transcription in pancreatic ß-cells, supporting EDEM1 as a potential target for the treatment of diabetes.

4.
iScience ; 26(7): 107205, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485346

RESUMO

The impact of the peptide amino acids side-chain modifications on the immunological recognition has been scarcely explored. We investigate here the effect of methionine oxidation on the antigenicity of the melanoma immunodominant peptide 369-YMDGTMSQV-377 (YMD). Using CD8+ T cell activation assays, we found that the antigenicity of the sulfoxide form is higher when compared to the YMD peptide. This is consistent with free energy computations performed on HLA-A∗02:01/YMD/TCR complex showing that this is lowered upon oxidation, paired with a steep increase in order at atomic level. Oxidized YMD forms were identified at the melanoma cell surface by LC-MS/MS analysis. These results demonstrate that methionine oxidation in the antigenic peptides may generate altered peptide ligands with increased antigenicity, and that this oxidation may occur in vivo, opening up the possibility that high-affinity CD8+ T cells might be naturally primed in the course of melanoma progression, as a result of immunosurveillance.

5.
Br J Pharmacol ; 179(19): 4738-4753, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35736785

RESUMO

BACKGROUND AND PURPOSE: Glucagon-like peptide 1 (GLP-1) is a hormone derived from preproglucagon. It is secreted by enteroendocrine cells in response to feeding and, in turn, acts as a critical regulator of insulin release. Modulating GLP-1 secretion holds promise as a strategy for controlling blood glucose levels. EXPERIMENTAL APPROACH: To dissect GLP-1 regulation and discover specific secretagogues, we engineered a reporter cell line introducing a luciferase within the proglucagon sequence in GLUTag cells. The assay was validated using western blotting and ELISA. A focused natural compounds library was screened. We measured luminescence, glucose uptake and ATP to investigate the mechanism by which newly found secretagogues potentiate GLP-1 secretion. KEY RESULTS: The newly created reporter cell line is ideal for the rapid, sensitive and quantitative assessment of GLP-1 secretion. The small molecule screen identified non-toxic GLP-1 modulators. Quercetin is the most potent newly found GLP-1 secretagogue, while other flavonoids also potentiate GLP-1 secretion. Quercetin requires glucose and extracellular calcium to act as GLP-1 secretagogue. Our results support a mechanism whereby flavonoids cause GLUTag cells to utilize glucose more efficiently, leading to elevated ATP levels, followed by KATP channel blockade and GLP-1 exocytosis. CONCLUSION AND IMPLICATIONS: Our methodology enabled finding of new GLP-1 secretagogues. Quercetin is a potent, naturally occurring GLP-1 secretagogue. Mechanistic studies of newly found secretagogues are possible in newly created reporter cell line. Further validation in more physiological systems, such as primary L-cells or whole organisms, is needed. GLP-1 secretagogues might serve as leads for developing alternative glucose-lowering therapies.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Secretagogos , Trifosfato de Adenosina , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose , Luciferases , Quercetina
7.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671632

RESUMO

EDEM3 recognizes and directs misfolded proteins to the ER-associated protein degradation (ERAD) process. EDEM3 was predicted to act as lectin or as a mannosidase because of its homology with the GH47 catalytic domain of the Man1B1, but the contribution of the other regions remained unresolved. Here, we dissect the molecular determinants governing EDEM3 function and its cellular interactions. LC/MS analysis indicates very few stable ER interactors, suggesting EDEM3 availability for transient substrate interactions. Sequence analysis reveals that EDEM3 consists of four consecutive modules defined as GH47, intermediate (IMD), protease-associated (PA), and intrinsically disordered (IDD) domain. Using an EDEM3 knock-out cell line, we expressed EDEM3 and domain deletion mutants to address EDEM3 function. We find that the mannosidase domain provides substrate binding even in the absence of mannose trimming and requires the IMD domain for folding. The PA and IDD domains deletions do not impair the trimming, but specifically modulate the turnover of two misfolded proteins, NHK and the soluble tyrosinase mutant. Hence, we demonstrate that EDEM3 provides a unique ERAD timing to misfolded glycoproteins, not only by its mannose trimming activity, but also by the positive and negative feedback modulated by the protease-associated and intrinsically disordered domain, respectively.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , alfa-Manosidase/química , alfa-Manosidase/metabolismo , Proteínas de Ligação ao Cálcio/genética , Domínio Catalítico , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Células HeLa , Humanos , Manose/metabolismo , Manosidases/genética , Manosidases/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Mutação , Domínios Proteicos , Dobramento de Proteína , Mapas de Interação de Proteínas , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , alfa-Manosidase/genética
8.
Sci Rep ; 11(1): 2018, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479347

RESUMO

The transient receptor potential ankyrin type 1 (TRPA1) channel belongs to the TRP superfamily of ion channels. TRPA1 is a membrane protein with multiple functions able to respond to noxious stimuli, reactive oxygen species, inflammatory cytokines or pungent substances, and it participates in pain signalling, taste, inflammation and various steps of the tumorigenic process. To date, no reports have addressed the expression and function of TRPA1 in pancreatic ductal adenocarcinoma (PDAC) cells. This work reports the endogenous expression of TRPA1 channels in human pancreatic adenocarcinoma cell lines and provides insights into the function of the TRPA1 protein in the Panc-1 cell line. This study reports that cell lines isolated from PDAC patients had different levels of TRPA1 expression. The channel activity in Panc-1 cells, as assessed with electrophysiological (whole-cell patch clamp) and microfluorimetry methods, showed that non-selective cationic currents were activated by allyl isothiocyanate (AITC) in Panc-1 cells and inhibited by the selective TRPA1 antagonist A-967079. The current elicited by the specific agonist was associated with a robust increase in intracellular Ca2+. Furthermore, siRNA-induced downregulation of TRPA1 enhanced cell migration in the wound healing assay, indicating a possible role of ion channels independent from pore function. Finally, TRPA1 activation changed the cell cycle progression. Taken together, these results support the idea of channel-dependent and independent role for TRPA1 in tumoral processes.


Assuntos
Adenocarcinoma/genética , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Canal de Cátion TRPA1/genética , Adenocarcinoma/patologia , Cálcio/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Fenômenos Eletrofisiológicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Oximas/farmacologia , Técnicas de Patch-Clamp , Canal de Cátion TRPA1/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética
9.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423001

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) is the main mechanism of targeting ER proteins for degradation to maintain homeostasis, and perturbations of ERAD lead to pathological conditions. ER-degradation enhancing α-mannosidase-like (EDEM1) was proposed to extract terminally misfolded proteins from the calnexin folding cycle and target them for degradation by ERAD. Here, using mass-spectrometry and biochemical methods, we show that EDEM1 is found in auto-regulatory complexes with ERAD components. Moreover, the N-terminal disordered region of EDEM1 mediates protein-protein interaction with misfolded proteins, whilst the absence of this domain significantly impairs their degradation. We also determined that overexpression of EDEM1 can induce degradation, even when proteasomal activity is severely impaired, by promoting the formation of aggregates, which can be further degraded by autophagy. Therefore, we propose that EDEM1 maintains ER homeostasis and mediates ERAD client degradation via autophagy when either dislocation or proteasomal degradation are impaired.


Assuntos
Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Mapas de Interação de Proteínas/genética , Proteólise , Autofagia/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas , Complexo de Endopeptidases do Proteassoma/genética , Agregados Proteicos/genética , Dobramento de Proteína
10.
Front Chem ; 8: 184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266211

RESUMO

Since Graphene discovery, their associated derivate nanomaterials, Graphene Oxide (GO) and reduced-GO were in the forefront of continuous developments in bio-nano-technology due to unique physical-chemical properties. Although GO nano-colloids (GON) were proposed as drug release matrix for targeting cancer cells, there is still a concern regarding its cytotoxicity issues. In this study, we report on the fabrication of functional GON bio-coatings by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) to be used as drug carriers for targeting melanoma cells. We first performed a thorough in vitro cytotoxicity assay for comparison between GON and protein functionalized GON coatings. As functionalization protein, Bovine Serum Albumin (BSA) was non-covalently conjugated to GO surface. Safe concentration windows were identified in cytotoxicity tests by live/dead staining and MTS assays for five different human melanoma cell lines as well as for non-transformed melanocytes and human dermal fibroblasts. Hybrid GON-BSA nano-scaled thin coatings incorporating Dabrafenib (DAB) and Trichostatin A (TSA) inhibitors for cells bearing BRAFV600E pathway activating mutation were assembled on solid substrates by MAPLE technique. We further demonstrated the successful immobilization for each drug-containing GON-BSA assembling systems by evaluating cellular BRAF activity inhibition and histone deacetylases activity blocking, respectively. DAB activity was proven by the decreased ERK phosphorylation in primary melanoma cells (SKmel28 BRAFV600E cell line), while TSA effect was evidenced by acetylated histones accumulation in cell's nuclei (SKmel23 BRAF WT cell line). In addition, melanoma cells exposed to GON-BSA coatings with compositional gradient of inhibitors evidenced a dose-dependent effect on target activity. Such functional bio-platforms could present high potential for cell-biomaterial interface engineering to be applied in personalized cancer therapy studies.

11.
Cell Mol Neurobiol ; 40(6): 1011-1027, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31950314

RESUMO

Iba1 (ionized calcium binding adapter protein 1) is a cytoskeleton protein specific only for microglia and macrophages, where it acts as an actin-cross linking protein. Although frequently regarded as a marker of activation, its involvement in cell migration, membrane ruffling, phagocytosis or in microglia remodeling during immunological surveillance of the brain suggest that Iba1 is not a simple cytoskeleton protein, but a signaling molecule involved in specific signaling pathways. In this study we investigated if Iba1 could also represent a drug target, and tested the hypothesis that its specific silencing with customized Iba1-siRNA can modulate microglia functioning. The results showed that Iba1-silenced BV2 microglia migrate less due to reduced proliferation and cell adhesion, while their phagocytic activity and P2x7 functioning was significantly increased. Our data are the proof of concept that Iba1 protein is a new microglia target, which opens a new therapeutic avenue for modulating microglia behavior.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Inativação Gênica , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Animais , Adesão Celular , Contagem de Células , Linhagem Celular , Movimento Celular , Proliferação de Células , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Proteínas Opsonizantes/metabolismo , Fagocitose , RNA Interferente Pequeno/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Reprodutibilidade dos Testes , Zimosan/metabolismo
12.
Bioorg Chem ; 92: 103295, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31546206

RESUMO

In this study we describe the synthesis and characterisation of a new hydrazone-based fluorescent compound that is able to selectively label the endoplasmic reticulum (ER) in yeast and mammalian living cells. The fluorescence properties of the compound depended on the DMSO/water ratio and on the pH. NMR experiments allowed determination of the conformation adopted in various environments. Apart from the convenient synthetic procedure, our compound displays low cell toxicity and blue emission compatible with filters routinely used in fluorescence microscopy.


Assuntos
Corantes Fluorescentes/química , Hidrazonas/química , Saccharomyces cerevisiae/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Retículo Endoplasmático/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Microscopia de Fluorescência , Estrutura Molecular , Saccharomyces cerevisiae/química , Relação Estrutura-Atividade
13.
Adv Exp Med Biol ; 1140: 155-167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347047

RESUMO

Endoplasmic reticulum (ER) resident and secretory proteins that fail to reach their native conformation are selected for degradation through the ER-Associated Degradation (ERAD) pathway. The ER degradation-enhancing alpha-mannosidase-like proteins (EDEMs) were shown to be involved in this pathway but their precise role is still under investigation. Mass spectrometry analysis has contributed significantly to the characterization of protein complexes in the last years. The recent advancements in instrumentation, especially within resolution and speed can provide unique insights concerning the molecular architecture of protein-protein interactions in systems biology. Previous reports have suggested that several protein complexes in ERAD are sensitive to the extraction conditions. Indeed, whilst EDEM proteins can be recovered in most detergents, some of their partners are not solubilized, which further emphasizes the importance of the experimental setup. Here, we define such dynamic interactions of EDEM proteins by employing offline protein fractionation, nanoLC-MS/MS and describe how mass spectrometry can contribute to the characterization of such complexes, particularly within a disease context like melanoma.


Assuntos
Retículo Endoplasmático/fisiologia , Melanoma , Espectrometria de Massas em Tandem , Glicoproteínas/análise , Humanos , Proteínas de Membrana/análise , alfa-Manosidase/análise
14.
Tumour Biol ; 39(8): 1010428317720940, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28857015

RESUMO

Transient receptor potential melastatin 8 (TRPM8), a membrane ion channel, is activated by thermal and chemical stimuli. In pancreatic ductal adenocarcinoma, TRPM8 is required for cell migration, proliferation, and senescence and is associated with tumor size and pancreatic ductal adenocarcinoma stages. Although the underlying mechanisms of these processes have yet to be described, this cation-permeable channel has been proposed as an oncological target. In this study, the glycosylation status of the TRPM8 channel was shown to affect cell proliferation, cell migration, and calcium uptake. TRPM8 expressed in the membrane of the Panc-1 pancreatic tumoral cell line is non-glycosylated, whereas human embryonic kidney cells transfected with human TRPM8 overexpress a glycosylated protein. Moreover, our data suggest that Ca2+ uptake is modulated by the glycosylation status of the protein, thus affecting cell proliferation.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Canais de Cátion TRPM/genética , Cálcio/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Pâncreas , Neoplasias Pancreáticas/patologia , Técnicas de Patch-Clamp
15.
Biochem Biophys Res Commun ; 486(4): 978-984, 2017 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-28366632

RESUMO

We present here data on EDEM3 network of ER resident interactors and the changes induced upon this network by perturbing the early ER N-glycan processing with mannosidase and glucosidase inhibitors. By coupling immunoprecipitation with mass spectrometry we identified EDEM3 interactors and assigned statistical significance to those most abundant ER-residents that might form functional complexes with EDEM3. We further show that this ER interaction network changes in both content and abundance upon treatment with kifunensine (kif) and N-butyldeoxynojirimycin (NB-DNJ) which suggests that when interfering with the N-glycan processing pathway, the functional complexes involving EDEM3 adapt to maintain the cellular homeostasis. In order to increase the scope of EDEM3 network contenders, the set of MS identified species was further supplemented with putative interactors derived from in silico simulations performed with STRING. Finally, the most interesting candidates to this network were further validated by immunoprecipitation coupled with Western Blotting, which strengthened the confidence in the inferred interactions. The data corroborated herein suggest that besides ER residents, EDEM3 interacts also with proteins involved in the ERAD cargo recognition and targeting to degradation translocation into the cytosol, including UBA1 and UBA2 ubiquitinating enzymes. In addition, the results indicate that this network of EDEM3 interactors is highly sensitive to interfering with early ER N-glycan processing.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/fisiologia , Manosidases/metabolismo , Polissacarídeos/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia , Linhagem Celular , Humanos , alfa-Manosidase
16.
Electrophoresis ; 37(11): 1448-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26701645

RESUMO

The degradation process of the antigens specific to MHC-I presentation depends mainly on the proteasomal proteases in the cytosol. However, since many antigens are glycoproteins, including tumor antigens or viruses envelope proteins, their glycosylation status could also affect their processing and presentation. Here, we investigate the processing of tyrosinase, a multiple glycosylated tumor antigen overexpressed in human malignant melanoma. By LC-MS/MS analysis of human tyrosinase expressed in a melanoma cell, we show that all seven sites of tyrosinase are at least partially N-glycosylated. Using human CD8+ T-cell clones specific for the tyrosinase epitope YMDGTMSQV (369-377), including an N-glycosylation site, we found that transfectants of single and triple N-glycosylation mutants are recognized by specific T cells. Importantly, single, triple, and the aglycosylated tyrosinase mutants lacking the epitope located N-glycosylation site (N371D) were able to trigger higher CD8+ T-cell activation. The LC/MS analysis showed significant increase of the amount of YMDGTMSQV peptide resulted from accelerated oligomerization and degradation of aglycosylated mutants. The generation of the antigenic peptide by the antigen processing machinery is therefore largely independent of tyrosinase N-glycosylation. However, while distal N-glycans had no effect on the epitope generation, the mutants lacking the N371 glycan generated the antigenic peptide more efficiently. We conclude that epitope located N-glycans limit the ability of human tyrosinase to provide HLA-A2-restricted antigen for recognition by specific CD8+ T cells.


Assuntos
Apresentação de Antígeno/imunologia , Epitopos , Antígenos de Histocompatibilidade Classe I/imunologia , Polissacarídeos/imunologia , Linfócitos T CD8-Positivos/imunologia , Glicosilação , Antígeno HLA-A2 , Humanos , Ativação Linfocitária/genética , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/imunologia , Proteínas Mutantes
17.
Pancreas ; 43(5): 795-800, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24658318

RESUMO

OBJECTIVE: Recently, the transient receptor potential melastatin 8 (TRPM8) channel has emerged as a putative biomarker for pancreatic ductal adenocarcinoma (PDA). This study aimed to evaluate the expression of TRPM8 and its modulation by specific agonists and antagonists in PDA cells. METHODS: We examined the protein expression of TRPM8 in 3 different PDA cell lines and compared it with a nontumoral epithelial cell line of human pancreatic origin using Western blotting and immunocytochemical analysis. To assess the function of TRPM8 channels, we measured the TRPM8 currents in whole-cell mode of the patch clamp technique. To explore the putative involvement of TRPM8 in cell migration, we investigated the motility of PDA cells using the scratch-wound assay. RESULTS: Pancreatic ductal adenocarcinoma cells express functional plasma membrane TRPM8 channels, which are responsive after exposure to agonists (menthol and icilin) and antagonists N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide hydrochloride salt. The silencing of TRPM8 expression by small interfering RNA augments the migration of PDA cells. Conversely, the activated form of TRPM8 inhibits PDA cell motility. CONCLUSIONS: An unglycosylated TRPM8 protein is expressed and is functional in the membrane of PDA cells. Transient receptor potential melastatin 8 inhibits the migration of PDA cells, suggesting a putative role as a biomarker or target for this channel for PDA therapy.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Canais de Cátion TRPM/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Benzamidas/farmacologia , Western Blotting , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Mentol/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Técnicas de Patch-Clamp , Pirimidinonas/farmacologia , Interferência de RNA , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/antagonistas & inibidores , Tiofenos/farmacologia , Neoplasias Pancreáticas
18.
PLoS One ; 7(8): e42998, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905195

RESUMO

EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD) pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID) and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Monofenol Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Anticorpos/química , Cristalografia por Raios X/métodos , Retículo Endoplasmático/metabolismo , Glicosilação , Células HEK293 , Humanos , Melanoma/metabolismo , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/genética , Mutação , Polissacarídeos/química , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...